
Prompt Engineering Cheatsheet
In the age of generative AI, prompt writing has become a core engineering skill. Whether
building a chatbot, generating code, or designing autonomous agents, the prompt is your
most powerful interface with a Large Language Model (LLM).

This post distills the key ideas from Lee Boonstra’s excellent “Prompt Engineering” (Google
Cloud) whitepaper, adding my structure and visuals to offer you a practical cheat sheet and
mind map. It’s ideal for AI developers, product engineers, and anyone working with LLMs.

Prompt engineering isn’t just writing instructions — it’s an iterative, analytical, and
creative process. Techniques like Chain of Thought, ReAct, or Step-Back Prompting push
LLMs beyond surface-level output and unlock deeper reasoning, precision, and control.

Prompt Engineering

Fundamentals

Prompting Techniques

Code Prompting
Best Practices

Tools & Tips

LLM Config

Output Sampling

Zero-Shot

One-Shot

Few-Shot

System Prompting

Role Prompting

Contextual Prompting

Step-Back Prompting CoT

Self-Consistency

ToT Reason + Act

APE

Generate Code

Explain Code

Translate Code

Debug/Review Code

Provide Examples

Design with Simplicity

Be Specific About Output

Use Instructions Over
Constraints

Control Token Length

Use Variables in Prompts

Mix Class Order in
Few-Shot

Adapt to Model Updates

Experiment with Output
Formats

Repair Malformed JSON

Use Input Schemas

Collaborate with Others

Document Prompt Versions

json-repair
logging

Vertex AI Studio

LangChain Agents

Temperature

Top-K / Top-P
Token Limit

Greedy Decoding

Nucleus Sampling

JSON

XML

Versioning

Feedback

Evaluation Results

I decided to share this cheat sheet and mind map because I’ve seen firsthand how powerful
prompt engineering can be—but also how easy it is to get lost in the noise of examples,
techniques, and model quirks. Whether you're building products with LLMs or just exploring
what's possible, having an explicit, structured reference helps cut through trial and error and
brings clarity to experimentation. This is my way of consolidating what works, inspired by
real-world use cases and backed by proven strategies—hoping it saves others time and
helps push ideas forward faster.

The Cheatsheet

Technique /
Best Practice

Description When to Use Example

Zero-Shot
Prompting

Directly instructs the
model without
examples.

Simple tasks,
clear intent.

"Classify this review as
POSITIVE, NEUTRAL,
or NEGATIVE."

One-Shot
Prompting

Includes one
example in the
prompt.

Slightly
ambiguous tasks.

"Translate: Bonjour →
Hello" with one
example before.

https://www.kaggle.com/whitepaper-prompt-engineering
https://www.kaggle.com/whitepaper-prompt-engineering

Technique /
Best Practice

Description When to Use Example

Few-Shot
Prompting

Includes 3–5
examples. Helps
pattern recognition.

Complex tasks
needing structure
or format
guidance.

Parsing pizza orders
into JSON with multiple
examples.

System
Prompting

Defines model’s
global behavior or
rules.

To shape
response
style/format.

"You are a JSON API.
Always return valid
JSON."

Role Prompting Assigns a persona
or role to the model.

For tone, domain
knowledge, or
consistency.

"Act as a travel guide
and recommend
places in Rome."

Contextual
Prompting

Supplies relevant
background or task
details.

When the model
needs situational
context.

"You are writing for a
retro gaming blog..."

Step-Back
Prompting

Starts with
abstraction before
solving the task.

When stuck or
needing creativity
and reasoning.

"What makes a good
FPS level? Now write
one using that."

Chain of
Thought (CoT)

Encourages the
model to explain
reasoning steps.

Logic, math,
planning tasks.

"Let’s think step by
step..."

Self-
Consistency

Samples multiple
CoTs and picks most
frequent answer.

High-stakes
reasoning tasks.

Run same prompt 5
times, then majority
vote.

Tree of
Thoughts (ToT)

Explores multiple
reasoning branches.

Complex problem-
solving.

Used in decision-tree
like reasoning
problems.

ReAct (Reason
+ Act)

Combines reasoning
with tool use (API,
search).

Interactive agents. LangChain agents
using search to answer
real-world queries.

Automatic
Prompt
Engineering
(APE)

LLM generates
variations of a
prompt.

Exploratory
prompt generation.

"Give 10 ways to
phrase: 'Order one
Metallica T-shirt size S'"

Use Examples Provide exemplar
inputs and outputs.

To teach format,
logic, or behavior.

Few-shot classification,
formatting JSON, style
guides.

Design with
Simplicity

Clear, concise
language improves
output.

All prompts. Rewrite verbose
questions into
actionable commands.

Be Specific
About Output

Define output type,
format, or structure.

When output must
be structured or
constrained.

"Return result in 1
paragraph, JSON
format, uppercase
only."

Technique /
Best Practice

Description When to Use Example

Prefer
Instructions
Over
Constraints

State what to do
instead of what not
to do.

General rule —
positive prompts
perform better.

DO: "Return product
list in JSON" vs.
DON'T: "Do not use
Markdown."

Control Token
Length

Use config or text
instruction to limit
output.

For concise or
cost-sensitive
output.

"Summarize this in one
tweet."

Use Variables in
Prompts

Parametrize prompts
for reusability.

When integrating
into apps or
dynamic inputs.

"Tell me a fact about
the city: {city}"

Mix Few-Shot
Class Orders

Vary label order in
classification tasks.

To avoid bias. Rotate order of
POSITIVE, NEUTRAL,
NEGATIVE in
examples.

Adapt to Model
Updates

Tweak prompts
when LLMs change.

New model
releases or
upgrades.

Re-test and iterate
prompts after
upgrading from GPT-
3.5 to GPT-4.

Experiment
with Output
Formats

Use JSON/XML for
structured tasks.

Data extraction,
parsing, sorting.

Ask model to "Return
JSON with keys:
name, price, date"

Repair
Malformed
JSON

Use tools like json-
repair to fix
broken output.

When outputs are
long or truncated.

Useful in pipelines
processing LLM-
generated data.

Use JSON
Schemas for
Input

Provide structured
input for better LLM
understanding.

When prompting
with structured
data.

Schema: product →
name, category, price,
features, release_date

Collaborate on
Prompt Design

Share prompts
across engineers
and compare results.

Cross-team
prompt
optimization.

A/B testing different
prompt versions
collaboratively.

Document
Prompt Versions

Log prompts,
configs, and outputs
for traceability.

All projects,
especially
production.

Google Sheets / YAML
with fields: prompt,
model, temp, outputs,
notes.

